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Abstract

Abstract— This paper is concerned with the mapping of algorithms structured as depth p

nested for loops into special purpose systolic VLSI linear arrays. The mappings are done by using

linear functions transforming the original sequential algorithms into a form suitable for parallel

execution on linear arrays. The derivation of feasible mapping is done by identifying formal criteria

to be satisfied by both the original sequential algorithm and proposed transformation function.

Those formal criteria define the universe of feasible solutions and thus enable us to derive large

families of transformations; the target transformation can be then chosen using additional criteria.

Among such criteria could be: minimal execution time, smallest number of processors to be used, or

the requirement to use a processor with specific characteristics provided to us. We also study issues

dealing with modular extensibility (using one type of processor for arrays of various length) and

partitioning (using arrays that are small to solve large problems). The methodology, which deals

with general algorithms, is illustrated by synthesizing families of algorithms for matrix multiplication

and a version of the Warshall-Floyd transitive closure algorithm.

Index-Terms— VLSI, linear systolic array, algorithm transformations, hyperplane, parallel

processing, data dependence, data contention, modularly extensible, partition model, matrix mul-

tiplication, path-finding problems.
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1 Introduction

This paper is concerned with designing special purpose VLSI chips to implement particular algo-

rithms. Kung, Hwang and Briggs. Mead and Conway, Ullman and other researchers pointed out

that it will be beneficial to design systolic algorithms [16] [24] [10] [36], which are especially suitable

for implementation as VLSI chips. For systolic algorithms, consult [16] [9] [33] [18] [19] [21] [42] [6].

Implementation should be as efficient as possible in terms of the space and time resources required.

Area-Time trade-offs were studied by Thompson, Brent and Kung, Kedem [35] [5] [11] and others.

A systolic array is a special-purpose parallel device, made out of a few simple processing-element

(PE) types whose interconnection pattern exhibits regularity and locality. Several array structures

have been proposed, including linear arrays, mesh-connected arrays, and hexagonal arrays. In a

typical application, such arrays would be attached as peripheral devices to a host computer which

inserts input values into them and extracts output values from them [16].

We will study linear systolic arrays in this paper, as linear arrays are attractive for their bounded

I/O requirements and a simple global clock whose rate is independent of the size of the array. We
will consider the important class of algorithms structured as (depth) p nested for loops. VLSI

implementation of such algorithms were studied before, but it is our goal to present a systematic

method for transforming them into linear arrays.

The class of a general p nested for loop algorithms includes algorithms to solve matrix multi-

plication, L-U decomposition, matrix inversion, linear systems, path-finding problem [1] (including

all shortest path problem and transitive closure problem), pattern matching, bubble sort, a version

of Discrete Fourier Transform (DFT) [24], convolution [16], certain problems solvable by dynamic

programming, and others. These problems are of great importance in scientific computation.

Kung [14] [15] [16] first found that the regularity and locality properties of many algorithms

make them suitable VLSI systolic array implementations. Among them were matrix multiplication,

matrix-vector multipHcation. L-U decomposition, and others. Hwang and Cheng, Rote, Ma et al,

and Hochet [9] [34] [23] [8] and others found systolic array algorithms for solving linear systems,

path-finding problems, matrix inversion, and others. These pioneering works, which increased the

understanding of regularity and locality properties of algorithms, were based on the characteristics

of an individual algorithm under consideration.

Systematic synthesis methodologies were also proposed. Kung [18], Quinton [30], and Lin and

Wah [22] synthesized systolic array directly from uniform recurrent equations. They mapped p
nested loop algorithms onto (p- 1)-D systolic arrays. However, their method was limited in scope

because they could not find an easy way to determine the entrance time of input variables and to

obtain families of systohc implementations.

Kuhn [12], Moldovan [26] [27] [28] [29]. Miranker and Winkler [25], Wong and Delosme [41]
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synthesized systolic array based on the hyperplane method introduced by Lamport [20]. They

found the data-dependence vectors [20] of an algorithm first, and then they found a nonsingular

linear mapping preserving the data-dependence ordering of the original algorithm. This method is

also called space-time mapping.

In their model, Kuhn [12] and Moldovan [26] [27] mapped a p dimensional problem space to a t

loops 1-D time hyperplane and an s-D space hyperplane mapping, where p = t+ s. Moldovan [28]

[29], and Miranker and Winkler [25] mapped a p dimensional problem space to a 1-D time hyper-

plane and (p - 1)-D space hyperplane mapping. Wong and Delosme [41] mapped a p dimensional

problem space to a p- 2 loops 1-D time hyperplane and 2-D space hyperplane mapping, they then

mapped this p - 2 loops 1-D time hyperplane to a 1-D clock ticks.

As shown by examples in those papers, the results were in practice useful for mapping p nested

loop algorithms, for p > 2, on higher than 1-D arrays. In fact, there is no example given of mapping

a p nested loop algorithm into a linear array when p > 2.

Another open area left by the previous work was the formulation of necessary and sufficient

conditions for correct mappings. As an example we can observe that even though using the previous

results it was possible to guarantee that indices are mapped properly on PEs, there was no formal

way of guaranteeing that tokens do not clash in the PEs.

Ramakrishnan et al. [33] mapped 2-D and 3-D homogeneous graphs on linear arrays. They

provided certain necessary conditions for a correct mapping, but they did not provide a complete

set of sufficient conditions. As a result, they could not synthesize the linear array implementations

of Ramakrishnan and Varman [32].

We now proceed to examine the 1/0 complexity of common systolic array implementations of

the important algorithms we mentioned above (matrix multiplication, etc.). The algorithms were

usually mapped into (p - 1)-D arrays, see works of H. T. Kung, Leiserson, Mead, Conway, Kuhn,

Moldovan, Fortes. Rote, Hochet. and S. Y. Kung: [14] [15] [16] [24] [12] [26] [27] [28] [29] [34] [8] [19].

The arrays were of size 0(n''~M and the execution time was generally 0(n), resulting in optimal

processor/time product of 0(7?^). However, the number of pins required was at least Q{n^~^), that

is, it increased with the size of the problem solved, if p > 2. This may cause potential difficulties

during integration of the systolic array with the host computer.

Our goal is to map p nested for loop algorithms on systolic arrays with constant number of pins

(bounded I/O requirements), independent of the problem (or array) size. We will thus synthesize

linear array systoUc algorithms with the following complexity properties. For the set of problems

listed above, the execution time will be 0(7!^"^ ) and the number of I/O pins will be constant. We
will need 0{n^~^ ) storage locations. There are various way of deciding on the appropriate number

of PE's. It is possible to use only 0(n) PE's, thus obtaining an optimal processor/time product

of 0(7?''). This, however, requires storage of 0(71^"'^) in each PE. Thus, if we want the array to



1 INTRODUCTION 4

be modularly extensible, that is for each PE to have constant amount of storage, we may actually

prefer in practice to use 0{n'''~^) PE's.

To accomplish the above in a systematic manner, we present a methodology for mapping p

nested for loop algorithms into linear arrays. A mapping is derived by using a function transforming

the original sequential algorithm into a form suitable for parallel execution on a linear array. Our

approach, similarly to Kuhn's and Moldovan's, is based on Lamport's hyperplane method [20].

However, we transform a p nested for loop algorithm into a 1-D time hyperplane and a 1-D space

hyperplane linear-array algorithm.

We also find the data-dependence vectors first. However, we classify them into three types

based on certain formal properties. This classification of data-dependence vectors allows us to

formulate conditions on the target linear array down to the register level. As data-dependence

constraints provide more information than the standard directed graph representations [18] [19]

[33], our method can provide more implementations details.

A mapping of a p nested for loop algorithm on a linear array must satisfy certain constraints in

order to assure correct flows of token streams. In this paper we list formal necessary and sufficient

conditions to be satisfied by the mapping assigning tokens to the PE's at various time instances, so

that the resulting computation is physically (geometrically) feasible. Those necessary and sufficient

conditions are not reducible to the results of Kuhn, Moldovan, Miranker and Winkler, and Wong

and Delosme.

This follows from the fact that our necessary and sufficient conditions encompass several dif-

ferent aspects of the design. In addition to preservation of data-dependence and nonsingularity of

the mapping (as done by previous researchers) they also include prevention of data contention and

complexity of PE's hardware.

As an added benefit, this set of necessary and sufficient conditions allows us to study large

classes of mappings, as we are able to find families of solutions satisfying the conditions we derive.

Among the feasible solutions we can choose some based on optimality criteria, such as minimum

execution time or smallest number of PE's used.

We also analyze time complexity and the storage complexity of linear array implementations.

For a class of algorithms we study tight bounds of time complexity of the linear array implementa-

tions. Such algorithms include matrix multiplication, L-U decomposition, inversion of nonsingular

triangular matrix, matrix orthogonal triangularization. a version of transitive closure algorithm

[7], DFT, bubble sort, and others. We also provide a technique to determine whether linear array

implementations of these algorithms have both the optimal time complexity and storage complexity.

There may be additional concerns that one may want to consider in choosing a specific linear

array. For instance, we may consider relations between the number of PE's and the number of

registers in a PE. If the number of registers in a PE is constant, then arrays of various sizes can
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be build with a single type of PE, resulting in an modularly extensible array. We may cdso be

provided with some "standard" PE type and be required to design a linear array using the specific

number of storage cells in the PE's. Our method allows us to understand the relations between

such features of the provided PE's and the linear arrays that can be designed.

Finally, we are interested in designing algorithms that can be partitioned. Generally, the number

of PE's needed for the linear array solving some problem grows with the size of the problem.

We may, however, be restricted to arrays of certain size while still being required to solve large

problems. To accomplish that, it is necessary to partition the algorithm so that the token streams

travel through the array more than once. Partitioning of algorithms was considered before by

Guibas et al. [7], Hwang and Cheng [9], Moldovan and Fortes [28], Annaratone et al. [2], and

others. Our method for partitioning is quite general, but we need to impose additional restrictions

on the original "unpartitioned" families of solutions before we can partition them. Note that as

the unpartitioned algorithm used only a (small) constant numbers of pins, I/O considerations by

themselves do not require partitioning as done by e.g. [7] [9] [28].

As implicitly discussed above, it is useful to design linear array implementations for 2 nested

loop algorithms [24] [16] [28] [29]. Linear-array algorithms to implement 3 nested for loop algo-

rithms also have been studied before. Some previous results on linear arrays for 3 nested for loop

algorithms are due to [13] [17] [31] [32] [33] [40]. The fundamental problem studied there was

matrix multiplication. Their results fall within the framework of the methodology described in

this paper. In addition, we can also derive families of implementations that were not obtained

before, by examining families of solutions satisfying the constraints we define. However, some

implementations using different type of architecture, such as busses [38] [39] do not fall within our

framework.

The rest of this paper is organized as follows. In Section 2 we introduce the general p nested loop

algorithm and the linear-array model we will use. In Section 3 we demonstrate our methodology by

synthesizing a matrix-multiplication algorithm. In Section 4. we first introduce the classification

of data-dependence vectors which allow us to formulate conditions on the target linear array.

Second, we provide the necessary and sufficient conditions so that the mapping results in a correct

systolic linear array computation. Third, we analyze time and storage complexity of linear array

implementations. For an important class of algorithms, we find tight bounds on the time complexity

of linear array implementations. We also provide a technique to show whether the linear array

implementations of these algorithms have both the optimal time complexity and optimal storage

complexity. In Section 5, we discuss various optimization criteria for general families of algorithms.

In Section 6 we discuss the constraints required for partitioning of algorithms. In Section 7 we

compare the suitability of two path-finding algorithms for implementation as linear arrays using our

methodology. The original Warshall-Floyd path-finding algorithm is not suitable for transformation
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to a linear array; however, another reindexed path-finding algorithm due to Kung [19] can be

transformed into linear array. Finally, some concluding remarks are given in Section 8. In the

Appendix, the methodology of this paper is distilled into a procedure for mapping p nested for

loop algorithms into linear arrays.

2 Model for Algorithms and Linear Arrays

2.1 Algorithm Model

In this paper, we consider the class of algorithms with p nested loops of the form:

for
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outside the loop. In addition, innerloop data dependencies have been removed by using compiler

techniques as described, for instance, in [4].

Observe that, if we define the index set of the algorithm P as

F = {(iui2,---,Jp)*\lj < ^J < Wj for j = l,2,...,p},

then the elements of /'' are ordered in a lexicographical ordering when the loops are executed.

We now formally define our algorithm model, described intuitively earlier.

Definition: A p nested loop algorithm is a 3-tuple Ag - (P,VAg,FAg)- Specifically:

1. P - {(n, . . . ,?p)'|/j < ij < Uj for J - 1,. .. ,p} is the loop index set.

2. Vaq is the set of variables.

3. FAg is the sequence of statements computed in every index in its active phase.

The loop index set and statements satisfy the assumptions discussed above. In addition, when

dealing with a p nested loop algorithm, we will frequently write "variable" for the name of an

array, or an entry of that array; however, when dealing with a corresponding linear array, we will

write "variable" for the name of an array, but we will write "token" for the entry of that array, if

this does not result in confusion. For example, we may write variable A, variable A[17], and token

Aim-

2.2 Linear Array Model

In this subsection, we present formally the linear-array model we will use. It is a modification of

the one employed by Ramakrishnan et al. [33]. It may be helpful for the reader to briefly look at

Fig. 1 and Fig. 2. As seen there, identical PEs are connected to each other by means of links to

form a linear array.

Definition: A linear array is a 5-tuple Ar = (M, K.Tat, Bat^Fat), where M is the number of

PEs in the array and K.Tat, Bat and Fat form the description of an individual PE. The number

A' states the number of data links for each PE. Specifically:

1. .A/ is the number of PEs in the array. They will be numbered from left to right as

PE,,PE2,...,PEm-

2. A' is the number of data links. Every PE has A' pairs of input/output ports and such pairs

will be referred by integers from {1,2,..., A'}.
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3. Tat — (^1. '2i • • • i*A')i where /, = 1 or — 1 for all 1 < ? < A', is the sequence of the directions

of the (data streams flowing through the) links. If the data stream i flows from left to right

then ti = 1, if it flows from right to left then <, = —1.

4. Bjir = {bi,b2. . . . ,bj^), where 6, > for all 1 < ? < A', is the sequence of the sizes of the

buffers (the number of shifting registers) corresponding to the hnks.

5. Fat is the A'-ary functions computed by every PE in its active phase.

Thus, a linear array has the following communication features:

• Each link i is used for communication between adjacent PEs. Consider link i between PEj

and PEj+\ for I < j < M, if ^ = 1 then the output link i of PE-j is connected to the input

link i of PEj+i; if i, = -1 then the output link i of PEj+i is connected to the input link i

of PEj.

• External communication with the host takes place through certain ports designated as follows:

for each i if /, = 1 then the input stream i enters /, of PEi and the output is from O, of

PEm; if t, = — 1 then the input stream i enters /, of PE^ and the output stream is from Oi

of PEi- (/,'s and 0,'s are just different terms for links at the boundaries of the array.)

• At time t, if a data token of stream i reaches PEj, then at time t + b, + I this token will

reach PEj+t,-, for 1 < j + 't < M-

Each data stream consists of data tokens that travel at a fixed velocity (number of PEs per clock

tick) on a unique data link. To implement fixed stream velocity, each data link passes through all

the PEs and utilizes a constant number (possibly zero) of shifting registers in each PE as a delay

buffer. The buffer lengths are the same in all data links for a specific data stream, so that for a

data stream the link delay is the same for all tokens in all PE; however, different data links may
have different buffer lengths. A PE is illustrated in Fig. 1 and a linear array is illustrated in Fig.

•2.

In Fig. 1, there are A' = / + r data streams 1,2,. .
.
,/ and / + l,/ + 2, ...,/ + r. The first / data

streams flow from left to right and the last r data streams flow from right to left. In Fig. 2, I,/0,

for i — 1, ..., I and Ii^j/Oi^j for j = 1, . . . , r are external input/output ports for the / + r data

streams 1,2, ... / and / + 1, / + 2, . . . / + r respectiy. Data tokens are fed into and extracted from

the array through these ports.

In our model we did not allow <, = 0, though this is of course a simple extension. We are

interested here only in implementations in which every data item is pipelined in order to avoid the
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need for memory addressing and control hardware in each PE and the preloading and downloading

of data. By aUowing t, = we can model other implementations, such as WARP [17], in which

certain data items are fixed in PEs.

We will relate the F^r to the F/^g of the algorithm model. In effect, F^^ = F^g-

For each problem "type" such as matrix multiplication we are interested in a family of linear

arrays, such that each of this family of linear arrays can solve the problem. Ideally we would like

to be also to use a single linear array for all values of the problem size, so that M, K , Tat, Bat

and Fat could be made independent of the problem size. However, sometimes we will allow M and

6,'s to be functions of the problem size while still insisting that K,Tat and Fat a.re independent

of the problem size.

In the next section, we shall show how to map a 3 nested loop algorithm onto a linear array.

3 Example : Matrix Multiplication

We find it expedient to describe the method both formally and by referring to a running example

of matrix multiplication. In the Appendix we will state the method concisely.

Let us consider the standard 4x4 matrix-multiplication algorithm.

Input : Matrices A^-^^ and i?4x4-

Output: Matrix C4X4, where C4X4 — ^4x4 X .64x4-

for ? = to 3 ^

for j = to 3

for ^- = to 3 , .

C\i.j]:=C[uj] + A[,,k]*B[k,j]

endJbr

end _for

end_for

Here the algorithm model Ag = ({(?', i,/c)'l0 < ij,k,< 3}, {A,B,C}, (C[i,j] := C[iJ] + A[i,k] *

B[k,j])). Our method consists of several steps.

3.1 The Lamport condition

We reiterate here the fundamental result due to Lamport [20] dealing with parallel execution of

nested loops. It was also used by Banerjee et al. [4], Kuhn [12], and Moldovan [28]. First, we label

each variable in the loop with an index (t'l, 12, • • • •,«?)'• We will frequently write "variable" for an
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entry of a matrix, or the name of the matrix, if this does not result in confusion. If the variable

is on the left-hand-side of : = , it means that the variable is regenerated in index (t'l, 22, . .
.

, ip)*; if

the variable is on the right-hand-side of := , it means that the variable was previously generated in

index (z'l, J2, • • • ,ip)'.

For matrix multiplication, p = 3. Now, the matrix-multiplication algorithm is described as:

Input : Matrices A4X4 and ^4x4-

Output: Matrix C4X4- where C4X4 = A4X4 X ^4x4.

1. for i = to 3

2. for j = to 3

3. for A- = to 3

4. /!('-'•'='[?•. A-]:= ^('^-i-*^)[t,fc];

5. ^('^'''[fc.i]:=fi('-i-'''=)[fc,i];

6. C("'J''^)[i,j]:=C(''J'''->'[i,i];

7. C^'-^-^^[iJ] := C^''^-%J] + A^''}'%,k] * B^'-^'''^[k,j]

8. end_for

9. end_for

10. end_for

In line 4, /!''•'•''"'
[i. A:] means that /l[i.A:] is regenerated in step (z,j, A-)' and A^''^~^'''^[i,k] means

that j4[2,fc] was previously generated in step {i,j — 1,A;)* and is used in step (i,j. A)'. Similarly,

for B and C in lines 5 and 6. After having all the needed data, in line 7 it can execute C[i,j] =

C[iJ]+ A[i,k]*B{k,j].

After labeling, one can define data-dependence vectors. A data-dependence vector of a variable

can be viewed as difference of indices where a variable is used and where that variable was generated.

From lines 4, 5 and 6. it is clear that the index step {i,j,kY depends upon all (j'-l, j, A')', {i,j-l,ky,

and (i,j.k — 1)' index steps. Thus, there are three data-dependence vectors in the algorithm:

di = (0,1,0)' for the pair (^(••'•'^^[i, A-], /l(''^-i''^)[i, fc])

d2 = (1,0,0)' for the pair (5<''J-'^'[A% j], ^(-^•'•'^^[A:, j])

^3 = (0,0,1)' for the pair (C'''^-*)}^ j],C(''^''^-i)[i,
j])

We say that di is with A, ^2 is with B, and ^3 is with C. In addition, we say that all of di,d2 and

c?3 are related to C, because C[i,j] uses all /1[j.A-], B[k,j], and C[i,j], the variables with di, d^,
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and c/3, respectively. Therefore, in matrix multiplication we say that index I2 depends on index /i

if and only if h — h + "'Wi + ni2'^2 + "'3^3 for mj, m2, m^ > and at least one of mi, m2, m^

is positive. These relationships can be described by a data-dependence graph as shown in Fig. 3.

Lamport considered partitioning of indices («i, 12, . ,ipY so that they lie on a family of parallel

hyperplanes such that all indices lying on one hyperplane can be executed simultaneously. Let H
be a vector (oi, 02, . . . ,ap), then aiX\ + 02X2 + • • • + apXp = d for various values of d define a family

of hyperplanes. We will frequently write "hyperplane" for a family of parallel hyperplanes, the

vector defining them, or an individual hyperplane in the family, if this does not result in confusion.

A special case of Lamport's result is:

Theorein 1 : Let H = {01.02-, ,ap) be a hyperplane. IfHd, > for each data-dependence

vector d, = (dji.d,2. . .d,p) and two indices I\ and I2 satisfy H/j = H/2 = c. then /j and I2 are

independent of each other, and therefore they can be executed simultaneously. O

An optimal Lamport's hyperplane H = (qj, Q2, . . . ,Qp) can be obtained by solving an integer

programming problem under the following constraints:

1. H^d, > for all data-dependence vectors and

2. H^ = minH{max{|H(/2 - /,)| |
lu h G P}}-

H minimizes the number of hyperplanes required to partition the indices and gives an optimal

time for parallel implementation of the algorithm on an MIMD (Multiple Instructions and Multiple

Data) machine. For matrix multiplication H = (1,1,1), that is, the hyperplane is x -\- y -\- z = c.

As we shall immediately see, H defined above cannot be used for implementing linear arrays, as

there are locality constraints to be satisfied.

For convenience we will use H to denote Lamport's hyperplanes, HP~^ to denote hyperplanes

used for mappings on {p - 1)-D arrays, and H-^ to denote hyperplanes used for mappings on 1-D

(linear) arrays. Subscripts may be used to distinguish between different hyperplanes in the same

"class."

3.2 Computation of H^ and S

It is our goal to assign each index of P to both a specific time instance and a specific linear array

location by means of a linear transformation. We can therefore describe the desired assignment

as a linear mapping from p dimensions into 2 dimensions. Thus (ri,i2, • . ,ipY 1

—

> {t,l) where t

specifies the time instance and / the PE number. We refer to this mapping as a 1-D time hyperplane

and a 1-D space hyperplane linear-array algorithm (H-'iS). This terms will be explained in the

next paragraph. As finding the mapping is the heart of the method, the description of this step will
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be quite long and detailed. We will also state precisely in Section 4 the conditions to be satisfied

for correct and efficient implementation.

First, we define H-^ and S. H is a vector (h\,h2, . ,hp) and S is a vector (si,S2, .. . ,Sp).

j
(ii,i2i • • • lip)' results in a 2 dimensionalGiven an index («i, J2i • • • i^p)*, the mapping

vector:

/?1 /l2

Si 52
(?l,i2, .. . ,ip) =

hxix + /l2?'2 + h /ipi

Sill + S2»2 + V Spl

V'V _
V-P I

where / and / specify the time and the location of a data token with index (t'l , Z2, . .
.

, ipY-

For completeness, we relate the above to work done on mapping nested loops to (p-l)-D arrays.

As mentioned previously this was studied by Kuhn [12] and Moldox-an [28]. They mapped the p-D

space of indices into a p-D space: (z'l, 12, ,ip)' '—> (<,/i, . . . ,/p_i), where (/i, . . . ,^p-i) state the

location of the PE executing index (Ji,i2i • • -.ipY at time /.

Their algorithms, which we denote by (HP"-*^, S^" ), can therefore be described by means of a

mapping described by p nested loops on a p dimensional space. H^" is a vector (/ij" , . . . ,h^~^)

5ii ... Sip \

and SP ^ is a matrix Given an index (?'i, 12, . . . ,ip)', the mapping

HP-l
gp-i

'(p-i)i '•(p-i)p /

il,«2. ,ip) is a p dimensional vector:

^11

where / and (/i.

Sip

•^(p-i)p /

(n.'2 ipY =

( h\-U, ^ + hl'Hp
6\\i\ + h Sip«p

: + •• + :

V 5(p_i)ill + •• + 5(p_i)p2p /

\
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3.3 The example continued

VVe now continue with our example. As stated above H = (1,1,1), that is, the hyperplane is

X + y + z = c. Now let us consider a space hyperplane S = (31,82,83) such that all the indices

in a hyperplane s-^x + S2y + s^z = c are mapped into PEc of the linear array. For specificity of

explanation, suppose for now that the space hyperplane is S = (1, 1, -1). As shown in Fig. 4, there

are ten indices on the time hyperplane (H^) x ^ y + z = Z: (0,0,3)', (0,1,2)', (0,2,1)', (0,3,0)',

(1,0,2)', (1,1,1)', (1,2,0)', (2,0,1)', (2,1,0)', and (3,0,0)'. Let us now consider on which PEs

those indices are mapped. For convenience, we will assume that the PEs are numbered from -3

to 6, and not from 1 to M as formally required by our model. Since the space hyperplane is

S : X -\- y — z = c, then

(0,3.0)',(1,2,0)',(2,1,0)', and (3,0.0)' will be mapped to PE-i,

(0,2,1)',(1. 1,1)', and (2,0,1)' : P£i.

(0,1,2)' and (1,0,2)' : PjE-i,

(0,0,3)' : P^_3.

However, we must prevent (0,3,0)'. (1,2,0)', (2,1,0)', and (3,0,0)' from being mapping to PE^
at the same time instance, here time instance 3. (Similarly, for (0,2,1)', (1,1,1)', and (2,0,1)' to

PEi as weUas for (0,1,2)' and (1,0,2)' to P£-i.)

Thus, we need to use several different time hyperplanes, at least for this space hyperplane. The

reader will wonder at this point what would happen for space hyperplanes other than our example

space hyperplane (1. 1,-1). This will be discussed formally later in the paper.

It is our goal to find a time hyperplane H^ that will allow assignment of at most one index to

a PE at any time instance. In order to find such time hyperplane, various methods might be used.

We found the most expedient to show how to derive H^ by modifying Lamport's H^. Thus, our

H-"^ will be written as a linear combination: H-^ = H^ + 11, where 11 is referred to as an assistant

hyperplane. Our notation will be:

H = (Q1.Q2, . . . ,ap) is Lamport's hyperplane,

II = (tti, 7r2, . . . ,7rp) is our assistant hyperplane,

H = H + n is our time hyperplane, and

S = (si,S2^- ^Sp) is our space hyperplane.

We now continue with the four indices: (0,3,0)', (1,2,0)', (2,1,0)', and (3,0,0)' which were

mapped into PEj, at time instance 3. To "spread" them in time, we introduce an assistant hyper-

plane n = (7ri,7r2. TTs) that cuts the hyperplane H so that each time at most one of these four

indices will be mapped to ^£3. Suppose the assistant hyperplane \s Yi : x \- 2z = d. Then in the

time hyperplane x -\- y -\- z = 2,
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(0,3,0)'

(1,2,0)'

(0,2,1)' and (2,1,0)'

(1,1,1)' and (3,0,0)'

(0,1,2)' and (2,0,1)'

(1,0,2)'

and (0,0,3)'

will be executed at X + 2z = 0,

J + 22 = 1,

ar + 22 = 2,

x + 2z = 3,

x + 2z = 4,

x + 2z ^b,
X + 2z = e.

At this point (0,3,0)', (1,2,0)', (2,1,0)', and (3,0,0)' will not be mapped into PE3 at the same

time. (Similarly, for (0,2,1)', (1,1,1)', and (2,0,1)' to PE^ as well as for (0, 1,2)' and (1,0,2)' to

However, if H^ and 11 are linearly independent and (H + n)d, > for all data-dependence

vectors, then we can overlap to execute the indices according to H + 11 (see Fig. .5). In fact, if 11

slices H^, H^ and II must be linearly independent. In addition, if (H^ + n)d, > for all data-

dependence vectors, then H -1-11 still satisfies Theorem 1. So let the new hyperplane H^ = H -1-11

= (01,02,03) + (7ri,7r2,7r3) = (1, 1, 1) + (1,0,2) = (2, 1,3), that is, H^ .2x-\-y + dz = e.

Then (0,3,0)' will be executed at 2x + y -{- 3z = 3,

and

(1,2.0)'

(0,2,1)' and (2,1,0)'

(1,1,1)' and (3,0,0)'

(0,1,2)* and (2.0,1)'

(1,0,2)'

(0,0,3)'

2x + 2/ + 32 = 4,

2x + y + 3z = b,

2x + y + 3z = 6,

2x + y + Sz = 7,

2x+y + 3z ^8,
2x + 2/ + 32 = 9.

Recall that from the discussion above, indices (0,2,1)' and (2,1,0)' are executed in different

PEs. (Similarly, for (1,1,1)' and (3,0,0)' as well as for (0,1,2)' and (2,0,1)'.) All the indices

will be mapped to the PEs according to the new time hyperplane H^ = (2,1,3) and the space

hyperplane S = ( 1, 1, — 1) as in Fig. 6.

This mapping maps index (i,j, A;)' into PfJs{i,j,fc)' = ^^ii+j-k) ^.nd executes it at step

'H.^(i,j,ky = {2i -\- j + 3k). We now describe the behavior of the resulting linear array:

1. The tokens of A and B are pipelined and enter into the linear array from left to right; the

tokens of C are pipelined and enter into the linear array from right to left. The tokens of A
are fed into data link 1, the tokens of B are fed into data link 2, and the tokens of C are fed

into data link 3. (The entrance times of the tokens of A, B and C wiU be computed later.)

2. We now consider the speed of the token streams. Formal conditions will be given later. For

now we examine Fig. 6. The tokens of A flow at full speed, that is, there is no delay for the

tokens of A. The tokens of B flow at half speed, that is, there is one unit time delay when a

token enters a PE, or say, there is a delay buffer with one shifting register for the data link
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of B. Finally, the tokens of C flow at one third speed, that is, there are two units of time

delay, or say, there is a delay buffer with two shifting registers for the data link of C.

3. When the three tokens A[i,k], B[k,j] and C[i,j] enter PE(,+j_t,) at time 2f + j + 3fc, the PE

executes the instruction C[iJ] :- C[i,j] + A[i,k] + B[k,j]. D

In this example, we found a time hyperplane H-^ and a space hyperplane S so that they map

the matrix multiplication algorithm to the linear array. In general, the time hyperplane H-^ and

the space hyperplane S must satisfy certain constraints which we will state next.

4 On Synthesis of Linear Array Algorithms

In this section, we will state formal necessary and sufficient conditions to be satisfied by the

mapping (H-^.S) for correct implementation of p nested for loop algorithms on linear arrays.

Consider some p nested loop algorithm. After labeling ( "labeling" was introduced in Subsection

3.1), the number of statements in the loop body increases. However, all these additional statements

are trivial assignment statements (for example, x := x\). as they are used only for defining the

data-dependence vectors.

Let DAg = {d\,d2 f/u) be the sequence of the data-dependence vectors. Each data depen-

dence vector is with a single specific variable in V^g ("with" was defined in Section 3) and each

variable is also with at least one data-dependence vector ("with" is symmetric here). There may

be several data-dependence vectors with a variable; however, no two variables are with the same

data-dependence vector. (Thus we allow c?, = dj for i ^ j.) We make a non-essential simplifying

assumption. We assume that if </, = (dti,d,2, ,d,p), then gcd(d,i, d,2, . ,d,p) — 1. The case

when gcd(d,i,d,2, . . . ,d,p) 7^ 1 can be handled by a simple extension.

We will now relate the algorithm Ag to an array Ar. In our mapping we will need w data links,

as we will associate a dedicated data link with each data-dependence vector. Thus, in general

A' > u', and for simplicity w-e assume that K = w. d, will correspond to some data link i' of the

linear-array model. For simplicity, we assume that i' = i.

We now describe the relation between the variables of Ag and the w data links. If a variable

V £ V^g is with some number fi(V) data-dependence vectors, we wiU dedicate 6(V) links to it.

In effect, 6{V) copies of that variable will be "traveling" through the array, each in a dedicated

data link. A variable, in general, is an array and therefore may consist of many "atomic" entries.

In each data link dedicated to the variable, all those entries will appear during the execution of

the algorithm. Formally, we will say that several data streams (one per data link) are associated

with each variable and each data stream consists of all the tokens (individual atomic entries) of

the variable.
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To illustrate this, consider some algorithm in which the array ^[1..5,1..5] is with three data-

dependence vectors da, d^, and d^. Then there are three data links dedicated to A. Each entry

of A, e.g. A[l,4] participates in three data streams. In effect, we have three data streams, of 25

tokens each. Thus, A gives rise to 75 tokens.

We will now discuss how the properties of the algorithm Ag and the corresponding data depen-

dence vectors D^g influence the structure and the behavior of the linear array Ar implementing

Ag. Consider some data dependence vector <f, with some variable A'. Let x be any token of the

data stream corresponding to d,. Then based on the behavior of Ag, we can classify d, as being of

one of the three types:

type 1 : d, ^ and the token x is used (and regenerated) in aU indices of F of the form / -|- md,

for some I E P and all integers m.

type 2 : (f, 7^ and the token x is used (on the right hand side of : = ) in 7 £ /^ and is generated

once only In I — d, £ /''•

type 3 : d, = 0. Either x is generated (on the left hand side of := ) once only, or x is only used

(on the right hand side of :=) but it is not generated (or regenerated) in any index (X is

an input variable). (As we will discuss later, this implies that the computed value of x will

not be used in data stream i, or the token x is used only once in data stream i but is not

generated in any data stream.)

Lemma 2 (Zero-One-Infinite) : The three types are exhaustive, that is, no other case is possible.

D

In order to discuss these three types, we proceed to an example in which they all occur. Consider

the following (Longest Common Subsequence) algorithm:

Input : Arrays >l[l..m] and B[l..n].

Output: Matrix C[l..m,l..n], where C[i,j] = the length of the longest

common subsequence of >1[1..?] and B[l..j].

for i = 1 to m
for J = 1 to n

ifA[i]=B[j]

then C[i,j]:=C[i- I, j- 1] + 1

else C[i,j] := max{C[i,i - l],C[i - l,j]}

end_for

end_for
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Here the algorithm model Ag = ({{i.j)'\l < i < m, I < j < n}, {A,B,C}, (if A[i] = B[j] then

C[i,j] := C[i - 1, j - 1] + 1 else C[i,j] := max{C[i, j - 1],C[? - l,i]})). There are six variables

(i.e. A[i], B[j], C[i - 1, j - 1], [i,j - 1], C[i - 1,;], and C[iJ]) in the loop body. After labeling,

the algorithm becomes:

Input : Arrays >l[l..m] and B[l..n].

Output: Matrix C[l..m, l..n], where C[i,j] = the length of the longest

common subsequence of .4[1..2] and i?[l..j].

for i = 1 to m
for j = 1 to n

1. A^''J^[i] := /l(--^-i)[f];

2. 5(''J)[j] := 5('-i'^'[i];

3. C^''j)[i-lJ-l]:=C^'-'-^-''>[i-l,j-l];

4. c(''J'[(:,i - 1] := c<''J-^)[^i - 1];

5.
,

C(''^)[e-l,j]:=C(-i'^'[^-l,i];

7. if /l('-^)[i]- ^''-^Hj]

then C^''J\iJ] := C«''J)[i - l,i - 1] + 1

else C(''^'[«'J1 := max{C'*'J)[7:,i - l],C(''J'[i - l,i]}

end_for

end_for *

From lines 1 to 6. we get six data-dependence vectors,

di = (O.iy for(^(''J)[']-4<''J-i)[i]),
'

d2 = (l,0)'for(5(''J)[j],5(-i'^)[i]),

d3 = 11,1)' for (C(''^'[' - l.J - l],C('-i'^-^'[i - 1, j - 1]),

d, = (0,1)' for (C(•^)[^,J - l],C('-^-i)[i,i - 1]),

ds = (1.0)' for (C'''^'[?- l,i],C('-i'j)[?:- 1,;]), and

d6 = (0.0)'for(C('-^'[ni].C("'^>[/,i]).

di and 0^2 are of type 1, da, ^4, and c/5 are of type 2, and dg is of type 3.

If a token is with a type 1 data-dependence vector, then this token is needed throughout the

execution. In our example, both A[i] (with d^) and B[j] (with ^2) are such tokens.
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If a token is with a type 2 data-dependence vector, then this token is not needed after it is

used once. This observation points out that a token with type 2 data-dependence vector will not

be an input token or an output token. For example, C[i — l,j — 1], which was generated in index

{i - l,j - 1)', is with ^3. Thus, C[i - l,j - l] can be destroyed after it was used in index (J,j)'.

Similarly, C[i,j — 1], which was generated in index (i, j - 1)', is with ^4 and can be destroyed after

it was used in index (i,i)*. Finally, C[i - l,j], which was generated in index {i - l,j)', is with ds

and can be destroyed after it was used in index (i, j)*.

As we excluded the case when Sd, = in this paper, we will not consider the case when d, =

in the rest of the paper. For completeness sake, however, we will present a very brief discussion. If

a token is with a type 3 data-dependence vector, its behavior is more complex. It is generated (in

the data stream corresponding to d, ) but never used again in that data stream. Its value, however,

is not lost but must be copied as input value for other data streams. For example, C[i, j] is copied

to data links 3, 4, and 5 (corresponding to data streams 3, 4, and 5).

If some d, = 0, in the resulting array each PE will need an I/O port for transferring tokens

between the host computer. Thus, the total number of I/O ports will not be constant. As stated

in the introduction, in this paper we are interested in linear arrays with a constant number of I/O

ports.

We now discuss an important property of data streams. Each data stream of variable X with a

specific data-dependence vector d, has only one token (entry of A") used (and regenerated) in each

index. Therefore, each assignment statement in the loop body can be seen as a u'-ary function. For

example, r = FAg(vi,V2, .. . ,i\,), where pAg is a statement in FAg and r, is an entry of variable

V,, which is with d,.

Since all the statements in F^g can be handled in the same way, in the following we only consider

a single, representative, statement ^4^ instead of a sequence of statements FAg- For simplicity, we

assume that only one time unit is needed to execute the whole statements in the loop body.

A correct linear array algorithm (H^,S) that maps a p nested loop algorithm Ag into a linear

array Ar must preserve data-dependence relations, the right tokens must be in the right place at

the right time, and in addition, data tokens must not collide in data links.

It is our goal to find necessary and suflRcient conditions on synthesizing such linear array

algorithms (H^,S). We are also interested in the time complexity and the storage complexity

for (H-'^,S). Furthermore, for a special class of algorithms, whose set of the data-dependence

vectors is {^1,^2, • • • ,f/u} = {(1,0 0)', (0. 1, . . . ,0)', . . ., (0,0 1)'}, we are interested in

tight bounds on time complexity of their linear array implementations. This class of algorithms is

of particular interest, as it includes our example — matrix multiplication, and algorithms to solve L-

U decomposition, inversion of nonsingularly triangular matrix, matrix orthogonal triangularization,

a version of transitive closure algorithm [7], DFT, bubble sort [21], and others.
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4.1 Necessary Conditions

We now consider conditions to be satisfied by (H^,S) in order to assure a correct construction.

There are five necessary conditions for (H ,S).

1. H^ has to preserve the data-dependence relation, that is, if h - h - d, for any two indices

/i and/2 then/2 must be executed after /i. That is, Hl/2-Hl/i > 0, or, H1(/2-/i) = H^d, > 0.

Condition 1 : H^cf, > must bt true for all data-dependence vectors d,.

Note: This follows immediately from Lamport's result [20].

2. No two indices /i and I2 can be mapped to the same PE at the same time, that is, H /i = H /2

and S/i = S/2 can not be both true at the same time.

Condition 2 : ///i and I2 ore two indices ofP then

"')"-'"* (2)- '""''• ("s )<'--"'^'''^(S

for {Ij - Uj) < X J < (Uj — Ij) and j = 1, . .
. ,

p.

Note: This Condition is related to the nonsingularity condition of Kuhn [12] and Moldovan

[28]. Varman and Ramakrishnan [40] also gave a special case of Condition 2 to construct an array

for matrix multiplication.

3. Next, suppose a variable with the data-dependence vector d, is generated in index / and will

be used next time in index I + d,. Index I is executed in PE^j at time H^I. and the index /-+- di

will be executed in /'/^S(7+d,) ^* time H^(7-)- c?,). Thus the corresponding token is in PE^j at

time H^7 and is in PEs(i+d,) at time H^{! + d,). Therefore, "s{i^^;}ls;
^ = ^^ must be an

integer, as this token is delayed by a constant amount of time in each PE. (Note: if Sd, > then

g^'^' is positive, and that token is delayed by ^f' time. If Sd, < then ^f ' is negative, and
Til J

that token is delayed by —gj-^ time.

)

We now examine the data flow behavior of data stream i. Consider a token with data depen-

dence vector d,. From the discussion above, it follows that it wiU be delayed for
| g^

'
|
time while

travelling through one PE. One time unit is allocated to the processing time and therefore we have

to account for the remaining
| g^

'

|

- 1 time units. To accomplish that, we need
| g^

'

|

— 1 shifting
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registers in the data link i.

Condition 3 : 6,, the number of shifting registers in each PE for the data link i, must be
| gj

' |~^-

Sometimes, when we wish to refer directly to a condition on the value of g^ ' , we may use

Condition 3':

Condition 3'
: ^/' must be an integer for all data-dependence vectors d,.

4. Now, define the positive direction of the linear array to be from left to right and the negative

direction to be from right to left. Then, a token with data-dependence vector di that is generated

in index I is executed in PE^j at time H^J and will be used in index I + d, in PE^,j_^_^ ^ at time

Hi(7 + d,). Since U^(I + d,) > H^/, if Sd, > then P£s,;+j_) > PEgj and the token wiU flow

from PEgj to PjEs(7+d, ) '^^ ^^^^ positive direction, and if Srf, < then PE^,j^_j', < PE^j and the

token will flow from PE^j to P-Es(/+d,) ^'^ ^^^^ negative direction. Let t, = 1 denote that the data

stream i has the positive direction, and let t, — —I denote that the data stream i has the negative

direction. Then we restate the above as the condition:

Condition 4 : If Sd, > 0, then t, — 1 and the data stream i will be fed into the linear array at

P^miniSlilhel'']- If^<ii < 0) "*c" ^1 = ~1 (^^d the data stream i will be fed into the linear array

«^ -P-E'max{S/2|/2e/P}-

Note: (1) Ramakrishnan et al. [33] also gave a similar condition to Condition 4, but they did

not base it on the data-dependence vector d,. (2) If Sd, = then t, — and the data stream will

be fixed in the PEs. However, as stated above, we do not consider Sd, = in this paper.

Lemma 3 : Let (H^,S) satisfy Condition 3 and Condition 4 and let token x be with d,. If x is

in PEa at time Ta and will be in PEb at time Tb, then ^_^° = t,{b, + 1) = -g^

Proof : Immediately from Conditions 3 and 4. D

Corollary 4 : Let (H^,S) satisfy Condition 3 and Condition 4 and let token x be with d,. If x is

used in index I in PE^j at time H^ I and will be used in index I + d,, then x will be in PEgrj^^^

at time H^(7+ rf,).
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Proof : Immediately from Lemma 3. D

We can now derive the entrance time of each data token.

Corollary 5 : Suppose token x, whose data-dependence vector is d, of type 1, arrives at some

PEa at time Ta-

IfSd, > 0, then x is fed into the linear array into P.E'min{S7|76/p} ^^ time

ttI J

r„-(a-min{S7|/e/P})-^.

IfSd, < 0, then x is fed into •P-E'niax{S/|/€/p} °^ time

ra-(max{S7|7G/P}-a)-g^.

Proof : From Lemma 3, by linear interpolation. D

Corollary 5 shows that once we know that x enters some PE at some time, then we can obtain

the entrance time of x. On the other hand, if x enters the linear array at the specific entrance

time, then x will be in that PE at that time.

5. It may seem that we have identified all "major" necessary conditions. This, however, is not the

case. So far we have only examined the behavior of individual tokens. Now we will consider the

possible interference between tokens of the same data stream.

Let x\ and X2 be tokens of the variable A' in the data stream corresponding to d,. (Thus, of

course, d, is with A'.) x-y is used in index I\ and X2 is used in index l2- Conceivably X\ = X2- To

characterize when x\ ^ X2- we have two lemmas, depending on the type of d,. As the case where

it is of type 2 is trivial, we deal with it first.

Lemma 6 : Let xi and X2 be tokens of variable X in the data stream corresponding to di, which

is of type 2. Let ij be used in some index I\ and let X2 be used in some index I2. Then, Xi ^ X2

if and only if I\ ^ l2-

Proof : Immediately from the fact that each token is used in one index only, and no two tokens of

any data stream are used in the same index. D

Lemma 7 : Let x\ and X2 be tokens of variable X in the data stream corresponding to d,, which

is of type 1. Let X\ be used in some index I\ and let X2 be used in some index I2. Then, Xi ^ X2

if and only if I2 — I\ is not an integer multiple of d,.



4 ON SYNTHESIS OF LINEAR ARRAY ALGORITHMS 22

Proof

:

If part: We want to show that if Xi = X2 then h - h - rndi for some integer m. Assume that

/o is the first index in which token xi (X2) is used (and is also regenerated). Then /q < I\ and

Iq < I2 because of lexicographical ordering. From the definition of the data-dependence vector,

/i = 7o + mid, and I2 = Iq + m2di for some non-negative integers mi and m2- Therefore, I2 - h
— (m2 — Tni)d, = md, for some integer m.

Only if part: We want to show that if xi 7^ X2 then I2 — I\ i^ mdi for all integers m. Let 1\ be

the first index in which token xi is used (and is also regenerated) and let I2 be the first index in

which token X2 is used (and is also regenerated). Then xi will be used (and will be regenerated)

in all indices of the form /i + m\d^ £ /p and X2 will be used (and will be regenerated) in all indices

of the form I2 + m2rf, € /''.

Let us examine whether we could have I2 = Ii + rhitf, for some integer mi. If this equality

holds, then both xi and X2 are used in the index I2 = I\ -\- rhidi. However, as stated at the

beginning of Section 4, at most one token of any data stream can be used in an index. Thus,

{I2 — I\) ^ "'t/i for all integers m.

Then, from the definition of data-dependence vector, 7i = /i -|- Tn\di and I2 = I2 -\- m2di for

some non-negative integers mi and m2. Therefore, I2 — Ii = {I2 — A)+ ("^2 ~ mi)dt / md, for all

integers m. D

We will examine the case where (I2 — Ii) ^ 'mdi for all integers m. Then we will show that we

cannot have H^(72 — I\)Sd, = S(/2 — /i)H d,, as otherwise collisions would occur in data links.

As this is rather non-intuitive, we start with an example.

Let H-^ = (2,1,2) and S = (1.1,-2) for the matrix multiplication algorithm. This map-

ping (H ,S) satisfies Conditions 1 through 4 and the resulting behavior is described in Fig-7.

Observe that C[0,3] collides with C[2,0] and C[l,3] collides with C[3,0] because H^((2,0.0)* -

(0,3,0)')S(0,0,1)' = S((2,0,0)'-(0,3.0)')Hl(0.0,l)' = -2 and (2,0,0)' - (0,3,0)' / m(0,0,l)'

as weU as H1((3,0,0)' - (1,3,0)')S(0, 0, 1)' = S((3.0.0)' - (l,3,0)')Hl(0, 0, 1)' = -2 and

(3,0,0)' - (1,3,0)' ^ m(0,0,l)' for any m. To prevent this, we have the condition:

Condition 5 : If {I2 - h) 7^ md, for all integers m, then H^(/2 - I\)Sd, / S(/2 - Ii)B.^di.

Lemma 8 : Condition 5 is necessary.

Proof : We consider three cases:

1. H^/i =Hl/2.
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From Condition 2, it follows that S/j ^ S/j. U^ih - Ii)Sd, = (U'^h - ll^h)Sd, = 0;

however, from Condition 1, H^d, > and therefore S(/2 - /OH^d, = (S/2 - S/OH^d, yt 0.

2. S/i = S/2.

From Condition 2, it follows that H^/2 ^ H^/i. As we assume that Sd; 7<^ 0, H^(/2-/i)Sd, 7^

0. However, as S/2 = S/j, S(/2 - /i)H^d, = 0.

3. H^/i 7^ HV2 and S/i 7^ S/2.

Let xi and a-2 be two tokens of the variable A' corresponding to rf,, such that x^ is the token

used in /j and X2 is the token used in h- Consider two subcases:

(a) d, is a type 1 data-dependence vector.

Since h - h ^ "^^^i for all integers m, from Lemma 7, xi / X2- In addition, Xi is in

P^S/i at time H-^/i and X2 is in PE^i^ at time H^/2.

Without loss of generality, let H-^/i < H-^/2. Let PEb be the PE in which xi is

located at time H^/2. Then by Lemma 3, (H^/2 - H^/i)Sd, = (6 - S/i)H^d,. Assume

by contradiction that H^ih - Ii)Sd, = S(/2 - h)H^d,. Then, S(/2 - h)ll^di =

(b - SIi)}l^d,. From here, using H^d, 7^ 0, 6 = S/2. Thus, the tokens Xi and X2 both

use data link /' and appear in PE^j^ at time H-^/2. It is "data collision," which is not

aUowed. Therefore, H^(/2 - h)Sd, 7^ S(/2 - h)li^d,. ,

(b) df is a type 2 data-dependence vector.

Let Xk be a token of rf, generated in 7^ - d, e /'' and used in 7^ € P- It is used once

only and therefore its value can be destroyed afterwards. However, we will view Xk in

a natural way as being a member of a certain sequence of tokens. More specifically, let

i^, = max{i|7;, - jd, e /P}, 7/'"' = Ik- jr,d„ and let 7{""' be the last index in P of

the form 7/"^^'
-f md,.

There is a sequence of tokens naturally associated with the sequence of indices 7^"^*
,

7^'"' -\- d,. . .
.

, 7["*'. We denote this sequence by xl. Observe that the xl is analogous

to a single token of a data stream with type 1 data-dependence vector. Perform the

above for our tokens xi and X2 obtaining sequences of tokens x\ and X2- The rest of the

proof proceeds similarly to the second paragraph of the case 3(a) replacing xi there by

our x\ and replacing X2 there by our x'2-

D

An immediate Corollary, which we wiU sometimes find useful, is:
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Condition 5'
: If d, ^ mdj and dj ^ md, for all integers m, then g^

' 7^ g^
'

.

We summarize the preceding discussion in:

Theorenn 9 : A linear-array algorithm (H^,S) that maps correctly a p nested loop algorithm Ag

into a linear array Ar must satisfy Condition 1 through Condition 5. D

4.2 Sufficient Conditions

By assuming Condition 1 througli Condition 5. we will show that (H^,S) will preserve the data-

dependence relation, the right tokens will be in the right place at the right time, and in addition,

no data tokens will collide in data links. Therefore, Condition 1 through Condition 5 are not only

necessary, but also sufficient.

Theorem 10 : A linear-array algorithm (H'^,S) from a p nested loop algorithm that satisfies

Condition 1 through Condition 5 maps that p nested loop algorithm Ag correctly into a linear array

Ar.

Proof : Formally, the PEs in the array should be numbered from 1 to A/, and S should map the

indices into {PEi, . . . , PEf,j]. However, it will be convenient to continue numbering the PEs from

min{S/i|/i G /^} to max{S/2|/2 € P) in this proof.

First, from Condition 1, H^ preserves the data-dependence ordering.

Second, we show that the "needed" tokens will flow to the right place at the right time, in ad-

dition, Fat = Faq C'FAg" was introduced at the beginning of Section 4). Because there are A' = w
data-dependence vectors, we can let pAg be the A'-ary functions executed at each loop index 7 of 7^.

We will only consider assignment statements, as other types of statements can be handled by trivial

modifications. Consider then, a typical assignment statement r := FAg{v-i,V2. . . ,vk), where v,

is the token (variable) with the data-dependence %'ector d, which was generated in 7, (7, G /'').

We will now show by induction on H^7 that all tokens u, arriving at PEj at time H^7 will have

correct values.

Basic step : When H^7 = min{H^/i|/i £ P}, all tokens u, are initial input/output tokens (vari-

ables). From Conditions 3 and 4 or Corollary 5, v, will rearch PE^t at time H^7. Thus, Fat

performs the same function as pAg in 7.

Hypothesis step : Before the time H^7, suppose that under (H^,S) pAr has generated the same

values as /Ug.

Induction step : At time H^7. from the definition of the data-dependence vectors we have

I=h+d,=l2 + d2 = ...= lK + dK, (1)
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for appropriate 7i.72, . . . ,/a'. From the hypothesis step, Vi was regenerated with correct value in

PE^j at time H-^/,. However, v, was not used (and was not modified) between the time instances

H-^7, and H-^(7, + d,) (not including H-^7, and H-^(7, + d,)). Then from Conditions 3 and 4 or

Corollary 4. i', will reach P-Es/.+Sd, at time H^7, + H^c?,. But from (1), S7 = S(7, + d,) and

H^7 = H^(7, + d,)\ therefore, all of the tokens v-i,V2,. ,ua' arriving at PE^j at time H-^7 will

have correct values. Fat will thus perform the same function as F^^ in 7.

Third, we will show that no two tokens (variables) collide in any data link. Assume by contra-

diction that data link i has two distinct tokens xi and X2 of the variable A' which collide in PEa
during the execution. (Thus, of course, d, is with A'.) Suppose then that xj is then immediately

used in index /i in -P-Es/i ^^ time H /] and X2 is then immediately used in index I2 in PE^j at

time H-'^/j. (If Xi or X2 will not be used again, then Xi was just generated in index /i or X2 was

just generated in index l2-) Consider two cases:

1. HVi =HV2.
Our assumption is that at some time instance x\ and xj collide in PEa, and then x\ is in

P£s/i at time H /i = H /2 and X2 is in PPg/j at time H I2 — H /i. However, since

all tokens of a data stream flow at the same speed, we have PEqj^ = PE^j^ contradicting

Condition 2.

2. H^/i ^ H'^h.

Without loss of generality, H'^/j < H^/2. Since x^ and X2 flow at the same speed, X2 will

flow from PEa to PE^j^ at time H^/i and then to PE^j^ at time H'^/2. As all tokens flow

with non-zero velocity. SI\ / S/2. Consider two subcases:

(a) I2 — I\ i^ rndi for all integers m.

From Lemma 3. token X2 is in PEsi^ at time H^/j, is in PP^s/j at time H^/2» and

therefore g/^Ig;
^
' = g/' • However, this contradicts Condition 5.

(b) I2 - h — T^tdi for some integer m.

Consider two cases:

i. d, is a type 1 data-dependence vector.

From Lemma 7, Xx = X2- However, this contradicts our assumption that X\ ^ X2.

ii. <f, is a type 2 data-dependence vector.

Since X2 is used in I2, X2 is generated only in l2 — di. However, since X2 was in PE^j^

and I2 / /i and I2 - I\ = md, for some integer m, I^ — I2 — d, and PEa — PE^j^.

From the definition of type 2 data-dependence vector, x\ will not be used again

after it is used in I\. Therefore, when X2 is generated in PEs(j^_j^) = PEgj^, xi is

destroyed. Thus, no collisions will occur.
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Finally, from Theorem 1, (H^,S) can be performed in parallel. D

4.3 Storage and Time Complexity

In this subsection, we study the storage complexity and the time complexity of the mapping (H^ , S).

Theorem 11 :

1. Total number of PEs is M = max{|S(/2 - h)\\ hJi ^ I^] + 1-

2. Total execution time is T = C)(max{|H^(/2 - /i)| | luh € /''} + A')\

where N = M(1 + E£i^)-

Proof

:

1. Follows immediately from the structure of the mapping.

2. The time complexity, T, of the linear array implementation is the time elapsed between the

instance the first token is input into the array and the instance the last token is output from

the array. Let T' be the time elapsed between the instance the first index is executed and

the instance the,last index is executed. Both the time between the instance the first token

is input into the array and the instance the first index is executed and the time between the

instance the last index is executed and the instance the last token is output from the array

are less equal to il/(max{6,|l < i < K] + 1). Thus T < T' + 2i\/(max{6,!l < i < K] + 1).

As T' = max{lH^/2 - /i)| |
luh € I"} and M(max{6,|l < i < K) + 1) < N , the proof

follows immediately. D

Until now, in the linear array, PEs were numbered from min{S/i|7i G P] to max{S/2|/2 G P}.

Using M from Theorem 11, we can renumber PEs from 1, 2, .... A/ as is formally required. We
will say that (H-^,S) uses an N -storage linear array, where N = M(l + X^^j 6,), because N is the

sum of the total number of the PEs and the local registers.

Corollary 12 : Total execution time is T = il{N).

Let / and g be two functions of argument i. f = 0{g) if f < eg for some constant c and for sufficiently large x.

f = Q(g) a f > eg for some constant c and for sufficiently large x. f = Q(g) if / = 0(g) and / = n(s). / = o(g) if

fig —• as z —• oo.
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Proof : Since there is at least one data token passing through data link ? for 1 < i < A' and since

K is independent of the problem size n and

JV/(max{6,ll < i < K} + 1) < A' < A'M(max{6,ll < i < K} + 1),

the proof follows immediately. D

We now want to consider the case, where the set of the data-dependence vectors is {di,d2, . . ,duj}

= {(1,0, .. . ,0)', (0, 1, . . . ,0)', . . ., (0,0, ... , 1)*}. As mentioned above such algorithms include al-

gorithms to solve matrix multiplication, L-U decomposition, inversion of nonsingularly triangular

matrix [9], matrix orthogonal triangularization, a version of transitive closure algorithm [7], DFT,

bubble sort [21], and others.

We are interested in tight bounds on time complexity of linear array implementations of these

algorithms.

Theorem 13 : If{du ^2, ..., d^.} = {(1,0 0)', (0, 1, . . . ,0)', ..., (0,0,...,!)'} is the set of

data-dependence vectors in D^g, then the execution time is T = Q{N).

Proof : There are exactly p distinct data-dependence vectors in the set {d\,d2. . . ,dy^,}, so we

assume, without loss of generality, that K = w = p and di = (1,0, .. . ,0)', d2 = (0, 1, . . . ,0)', . .
.

,

and dp = (0,0. . . . , 1)'. From Condition 1, (/i,/2, . . . ,/p)' must be the first index to be executed

and (ui, U2, . .
.

, Up)' must be the last index to be executed, because H^d^ > 0, H^rf2 > 0, ...,

and H^t/p > 0. In addition, (ui,U2 UpY - (I1J2 ,lpY - (ui - l-i)di + (U2 - l2)d2 + ••

+ [Up - lp)dp. Since both (/1./2 ,lp)' and {li,l2, JpY + (u, - l,)d, will be mapped into the

linear array, (u, - l:)\Sd,\ < M. Let T' = H^{uuU2, . . . ,UpY - H'^il^h, JpY then,

T' = EfLi(", -/JHlrf, (because A- = p)

= E^=i(«< -/,)|Scf,|(6, + 1) (fromLemma3)
< Ef=i M(b, + 1) (because (u, - U)\Sd,\ < M)
< MiElUb. +K).

Since A' is independent of the problem size 7?, T' = 0{N). In addition, T < T'-)-l-|-2M(max{6i|l <

7 < A'} -I- 1) = O(A^). Finally, from Corollary 12 we have T = 0(7V). D

Theorem 13 shows that the tight bound on time complexity of this class of algorithms is the

same as the storage complexity. We can use this rather general result to show that some mappings

have both the optimal time complexity and optimal storage complexity.
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As an example, consider the nxn matrix multiplication algorithm Ag = ({{i,j,ky\0 < i,j,k, <

n-1}, {A,B,C}, iC[i,j] := C[iJ] + A[i,k]*B[k,j])). In Section 3 (and also in [31]), a linear array

algorithm with H^ = (2,l,n- 1) and S = (1,1,-1) was synthesized for this algorithm. (Actually,

Section 3 dealt with n — 4, but the extension to general n is trivial.) In this mapping, the total

number of PEs is (l,l,-l)((7i- l,n - l,0)'-(0,0,n- 1)') = 3n-2. In addition, there is one

register for A (6i = 1), no registers for B (62 = 0), and n -2 registers for C (63 = n - 2). Thus, the

total storage complexity of the linear array is A' = (3n - 2) E?=i(^. + 1) = (3n - 2)(2 + 1 + n - 1)

= Q{n^). As by Theorem 13, T = 0(A), we see that T = Q(n^).

We now show that this linear array is time optimal. As there are 3n^ tokens to be read and

there is only a constant number (three) of Input ports, the input time required is Q{n'^), and thus

the algorithm's time complexity is optimal.

We will now show that the storage complexity must be ri(n^), thus proving that the array is

storage optimal. Assume by contradiction that for some array implementing matrix multiplication

N = o{n^). Then by Theorem 13, T = o(n^) contradicting the fact that T = Q(n^). Thus the

algorithm above was optimal. Note: Ramakrishnan and Varman [32] also obtained this bound by

reducing matrix multiplication to a game played with tokens on an undirected graph.

As we wiU see later, all the linear array algorithms for matrix multiplication in Sections 5 and

6 have both the optimal time complexity and the optimal storage complexity. The storage can be

distributed in between 0(r?) and 0{n^) PEs depending on additional objectives of the designer.

5 The trade-offs

In this section, we consider the trade-offs between the time, the number of PEs and the number of

local registers in each PE.

In Subsection 3.3, we showed how to find the time hyperplane H^ — (2,1,3) when given a

space mapping S = (1,1,-1) for matrix multiplication. Furthermore, in Section 4 we specified

conditions to be satisfied in deriving a time hyperplane H^ for a given space mapping S. We now

want to consider explicitly the case where we are restricted to designing the linear array with a

specific type of PE provided to us in order to avoid custom design of the PEs. Alternatively, for

fabrication reasons, we may be restricted to designing PEs with / data links of positive direction

and r data links of negative direction for specific / and r. To further elaborate, it is of importance

to consider such restrictions because we may have only one type of PE available, or for reasons of

mass production we wish to produce only a smaU number of types of PEs but still should be able

to use them to design arrays solving a variety of problems. Such restrictions give rise to additional

constraints on the design which we will now consider.

We continue with the example of matrix multiplication. Earlier, we derived an implementation
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of the matrix multiplication algorithm characterized by H^ = (2,1,3) and S = (1, 1,-1). We see

that:

there is no shifting register for A because
| g/q J

q\, |

-1 = 0,

there is one : B because
| 5(j'o"oy I

- 1 = l^

there are two shifting registers for C because
| g/ooi'y I

— 1 = 2.

We now discuss how to utilize PEs in which the values of the parameters fej's and <,'s are not

under our control, and we have to design an array within these parameters. From Lemma 3, the

equation

1^ = ^(6. + !) (2)

must be satisfied for each i.

Let link 1 correspond to A, link 2 correspond to B, and link 3 correspond to C. Assume now

that we are provided with a PE in which 6i = 0, 62 = 1. 63 = 1, and /j = 1, <2 = 1, h = —I. From

(2), the following must be satisfied:

H^(O.l.O)' ^ ^
H^(1.0,0)' ^ 2 ^^^

H^(0,0.1)' ^ _2
S2(0,l,0)' ' S2(l,0,0)' '

^"
S2(0,0,l)'

Let H2 = (2^,1.2r) and S2 = (<^,1,— r). From Condition 1, 6,t > 0, from Condition 2, 2Sx + y +
2tz = and bx-\- y — rz — Ocan not both be true at the same time, where — (n — 1) < x,y,z < n—1.

For n = 4. we have —3 < x,y.z < 3. Finally, from Condition .5, we obtain the following three

inequalities: 1. 2(^j + 2/ + 2r:: 7^ (*>a- + ?/ — r^ (unless (1,3/,^)' = m(/i for some m), 2. 26x + y + 2TZ^

2tx + 2y - 2tz (unless {x,y,zY = mdi for some m), 3. 2bx -\- y -\- 2rz ^ —2bx - 2y -\- 2tz (unless

{x,y,z)' = mdy, for some vi). We can let b = \ and r = 2. Then, H2 = (2, 1, 4) and 83 = (1,1,-2)

satisfy Theorem 10 and the resulting mapping is shown in Fig-8.

Similarly, assume that we are provided with a PE in which 61 = 0, 62 = !• ''3 = 0, and ii = 1,

^2 = 1, <3 = — 1. From (2), the following must be satisfied:

Hi(O.l.O)' ^ Hi(1.0,0)' ^ Hi(0,0,l)'
^

83(0, 1,0)' '83(1,0,0)' '

^'^
83(0,0,1)'

Let H3 = (2(5, l,r) and 83 = (<*>, 1,-r). From Condition 1,6,t > 0, from Condition 2, 26x+y-irTz —

and bx \-y — Tz = Q can not both be true at the same time, where —(n—1) < x,y,z < n — 1. For

n = 4, we have —S<x,y,z< 3. Finally, from Condition 5, we obtain the following three inequali-

ties: 1. 2bx-{-y+Tz -^ bx+y—Tz (unless (x, y, 2)' = mdi for some m), 2. 26x+y+Tz ^ 2bx+2y—2TZ

(unless (x,y, z)* — md2 for some m ), 3. 2bx + y -\- rz :^ —Sx — y + tz (unless (x, y, 2)' = md^ for

some m). We can let b = 3 and r = 2. Then, H3 = (6,1,2) and S3 = (3,1,-2) satisfy Theorem
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10 and the resulting mapping is shown in Fig-9.

As the reader can see, the above three examples (the original one and the two new ones) share

the parameters 6i = 0, 62 = 1, and ti = 1, ^2 = 1, <3 = -1- Thus, they are all special cases of a

family of solutions defined by

H^(0,1,0)' . H^(1,0,0)' ^ , H^(0,0,1)'

S4(0.1,0r = '' S,(1.0,0)' = '' ^"'
54(0.0.1)' = -('^ + '^- ^'^

Families of solutions were studied before, for instance by Varman and Ramakrishnan [40]. We can

show that the family studied by them is a special case of the family defined by (3). Specifically,

let us further restrict (3) by imposing the condition that the only free parameter 63 + 2 in (3) is

restricted being prime. Using our notation, we can say that they found that if 63 + 2 is prime then

mapping the index (i, j,A:)' to /'£'5xi+j-(6+i)xfc ^t time 2 x (5 X t + j + (<5 + 1) X (63 + 1) X A: is a

family of solutions, where 6 =
l^-^f^],

and (5 = ^ + 1 if 63 + 2 divides 6, otherwise 6 = 6. Their

solutions can be obtained by specifying H-"- = {26, 1, {6 + 1)(63 + 1)) and S' = (6, 1, -{6 + 1)).

However, (3) admits other solutions too, for instance the two solutions above: (H2,S2) and

(113,53). Recall, that formula (2) is even more general than formula (3) and thus we can find

solutions satisfying formula (2) that do not belong to the family defined by formula (3).

Our method is also sufficiently general to encompass some additional results obtained by other

researchers previously. We now list them for completeness:

1. If we let Ha = (2,1,7?) and 5a = (1,1,0), then we obtain the algorithms in Kulkarni and

Yen [13] and Kung [17].

Note: in this case, the tokens of C are fixed in the PEs.

2. If we let H^ = (2. 1. n — 1) and S^ = (1,1,-1), then we obtain the algorithm in Ramakrishnan

et al. [31].

3. If we let HJ = (26.1. t) and 5c = (6,1. -t) for 6 = n and r = ^^ when n is odd. and for

6 — n - 1 and 7" = f when n is even, then we obtain the algorithms in Ramakrishnan and

Varman [32].

4. (H^ ,S') is the "Full-Pipeline" algorithm in Varman and Ramakrishnan [40].

5. If we let H^ = (26,l,v) and 5^ = (^,1,0) for prime v. and n < 1/ < 2n, and there are \j]

local registers for C in each PE, then we obtain the "Partial-Pipeline" algorithm in Varman
and Ramakrishnan [40].

Note: in this case, the tokens of C are fixed in the PEs.
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The other objectives in designing the array may include the minimization of the execution time

or the number of PEs used. To state formally:

1. If we want to obtain an algorithm with minimum execution time, then we add the constraint

H^ = min{max{|H^(72 - /i)|
I

luh € /"}}•
Hi

2. If we want to obtain an algorithm with minimum number of PEs, then we axid the constraint

S = min{max{|S(/2 - /i)| | /i,/2 € /''}}•

S

Note that, of course, it may not in general be possible to satisfy these two objectives simultaneously.

We will not consider in this paper other optimization criteria such as the minimization of

PE/time product or PE/time^ product or the maximization of throughput or PEs' utilization.

These types of optimization generally require smaller number of PEs, more local registers in a PE,

and more I/O ports. It is possible to create designs taking into account these criteria; however,

they will not be modularly extensible, storage optimal, or bounded I/O. In addition, if the number

of local registers for each data link i is greater than g'^ ' - 1, this requires memory addressing and

control hardware, because of not purely systolic nature of the computation.

6 The partition model.

Consider the case when we are given a specific type of PE suitable for designing the required

linear array algorithm. As the size of the problem to be solved grows (e.g., the dimensions of the

matrices to be multiplied increase), we wiU need more and more PEs to construct an array solving

the problem, as the amount of storage needed increases. What should we do then if the number of

PEs provided to us is limited? This problem was studied extensively too, see [7] [9] [28] [2], who

provided partition methods to deal with it.

The goal of Guibas et al. [7] and Hwang et al. [9] is to solve the problem by using 2-D ar-

rays with limited number of PEs. They concentrated on specific algorithms. Guibas, Kung and

Thompson [7] studied partitioning for dynamic programming, matrix multiplication, and transi-

tive closure. Hwang and Cheng [9] proposed a set of four primitive chips which when properly

interconnected could solve the matrix multiplication, LU decomposition, inversion of nonsingular

triangular matrices, and the solution of linear systems of equation. Moldovan and Fortes [28] con-

sidered a general model for partitioning. They divided the index space /^ into bands according to

the time hyperplane, assigned an ordering to execute the bands, and then mapped each band to a

fixed (p — 1)-D array.
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Annaratone ei al. [2] gave three partitioning methods: input partitioning, output partitioning,

and pipelining. These three methods were applied to the WARP computer. Input partitioning and

output partitioning are not systolic. Pipelining is systolic; however, it is a partial pipeline (some

data are fixed in PEs and some data are pipelined). Partial pipelining algorithms were partitioned

by assigning each row or column of a matrix to a PE, and each PE then performs one stage of the

processing. The intermediate result of one PE will be sent to the next PE resulting in pipeline.

Since WARP computer has only a 1-D WARP array with ten PEs, the algorithm requires many

scans for a 512 x 512 matrix multiplication problem.

We will also study partitioning of algorithms. Suppose, P = {(2i,j2, . . . ,ip)' \lj < ij <

Uj and Uj — Ij = 0(n) for j = l,2,...,p}. For each value of n. we require a linear array of

some storage size. If we are given an array with smaller storage, we need to partition the algo-

rithm. We will show how to do that if all the data streams flow in the same direction. In the sequel

we will refer to the algorithms considered so far as unpartitioned.

Suppose then that for problem size characterized by n as above, we need an A'^ = N{n) storage

linear array and requiring T time for an unpartitioned algorithm. If we are given only a fc-storage

linear array {ot k < N, then we wiU consider feeding the data streams iN/k] times into this k-

storage linear array. This approach is illustrated in Fig-10. In Fig 10-a, if the data streams need to

be fed into the A'^-storage linear array once only, then in Fig 10-b, the data streams will be fed into

the fc-storage linear array m — [A7^"l times. Thus, the new algorithm can be naturally divided

into m phases.

Since T time is required to feed the data streams into the linear array once, the total execution

time is 0{TN/k). Next, suppose that this Ar-storage linear array contains q PEs and some index /

is executed in PE^j in the unpartitioned algorithm. Then, I will be executed in

f-^((S/-min{S/i|/i6/p}+i)mod,) '" ^he partitioned algorithm (a modi G {1,2, .. . ,6}). Furthermore,

it is executed at time H^7 in phase [(S7 - min{S/i|/i 6 P] + I)/?]. We state the above as the

following condition:

Condition 6: If all the data streams have the same direction, i.e. for all d,, Sd, > 0, and q is the

number of PEs in the available linear array, then for the partition algorithm (Hq,Sq).-

• H^7 = Hi/in phase [(S/ - min{S/i|/i £ I^] + l)/9l,and

• Sq/ = (S7 - min{S/i|/i e /P) + 1) mod q.

Note: This condition applies if we do not utilize any information about special properties of

the specific problem and its unpartitioned solution that could hold for some special cases. Thus,

it is applicable to general p nested loop algorithms. We are studying some important problems for
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which advantage can be taken of the problem's structure. They are, however, beyond the scope of

this paper.

As an example, we will now present a family of unpartitioned matrix-multiplication algorithms,

which can be easily partitioned.

As before, let link 1 correspond to A, link 2 correspond to B, and link 3 correspond to C.

Suppose that we are restricted to PEs characterized by 6i = 0, 6i = 1, and t^ = t^ = tj = I.

We want to derive conditions on 63. From Condition 6, Sd, > 0, from Condition 1, H-^cf; > 0,

and from Conditions 3 and 4, ^/' =63+1. Therefore, we must choose H^ = (2(5,l,r(63 -\- 1))

and S = (M,r), where (5 > and r > 0. Next, from Condition 5', ^ 7^ f and \ ^ liktii and
lih±ll ^ ^^ implying (63 + 1) > 2. or 63 > 2. Then, from Condition 2, 2Sx + y + 7(63 + l)r =

and 62- + y + t: = can not both be true at the same time (where —{n - 1) < x.y,z < n — I).

Finally, from Condition 5, we obtain the following three inequalities:

—
2/ + r(63 - 1)^ 7^ (unless (x^y.zY = mdi ior some m) (4)

6x + rb^z :/^ (unless (x,2/,2)' = md2 for some m) (5)

^(63 - l)j + 631/ 7^ (unless (x, t/,^)* = 777^3 for some m) (6)

To find simple solutions for 6 and r so that (4)-(6) are satisfied, we can require ^

r(63-l)>77gcd(r(63-l),l) (7)

Tb3>ngcd{Tb3J) (8)

6(b3-l)>ngcd(S(b3-l).b3)
. (9)

In particular, if 63 is prime, then first let 6 = \^^']. Second, if 63 divides b, then let (5 = ^ -f 1

and T = h: otherwise let ^ = ^ and t - b -\- I.

Such a choice of b and r will satisfy (7), (8), and (9), because gcd(r63,^) = gcd(r(63 - 1), 1) =

gcd((^(63 - 1),63) = 1 and rbj^rib^, - 1), 8(bz - 1) > n. Therefore, based on this choice, (H^,S) is

a family of algorithms for which all data streams flow in the same direction. In addition, both the

time complexity and the total size of the storage including the number of PEs and the number of

the local registers in each PE are 0[n'^). To create the partitioned version of these algorithms is

straightforward and we ommit the details from this presentation.

^Varman and Ramaknshnan [40] showed that if i, y, n. a and 8 are integers such that n > 0, < |x|,|j/| < n,

\<.a<n, 0>n gcd(a, /?), then qx ^ 0y.
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7 Two Path-Finding Algorithms

Path-finding problems '1] include the problems to compute the transitive closure and all shortest

paths. Kung [19] and Rote [34] also show that nonsingular matrix-inversion problem is a special

case of the path-finding problem. For 2-D systolic arrays to solve path-finding problems, consult

[7] [34] [23] [19].

Guibas, Kung and Thompson [7] first proposed a three-pass mesh-connected systolic-array

algorithm for the path-finding problem. This algorithm is very important for pragmatical reasons,

because, the data streams of each pass are the same as that of the matrix multiplication algorithm

described in Section 3. Therefore, we can construct a three-pass linear-array algorithm for the

path-finding problem based on their algorithm, which both is modularly extensible and provides a

partitioned algorithm. Varman and Ramakrishnan [37] also gave a solution for this method.

However, in this section, we want to synthesize a linear-array algorithm directly from the

Warshall-Floyd path-finding algorithm, because it is of independent interest for the following rea-

sons: (1) this algorithm has five data-dependence vectors instead of three data-dependence vectors"^

in [7], (2) this linear-array algorithm needs only one pass of data streams in unpartitioned algorithm

instead of three passes in the algorithm based on [7],

A. The Warshall-Floyd path-finding algorithm.

The transitive closure problem: Given an n x n Boolean matrix of elements C[?, j] over an n

node graph, with C[i,j] being 1 if there is an arc from node i to node j or i = j, and 0, otherwise.

Then, determine whether there is a path from node i to node j for all z,j.

The all-shortest-path problem: Given an n X n distance matrix of elements D[i,j] over an n

node graph, with D[i,j] being the length of the arc from node i to node j, where D[i,j] > and

D[i,i] — for all i,j. Then, determine what is the shortest distance from node i to node j for all

i, j-

The transitive closure and the all shortest paths can be obtained by the Warshall-Floyd algo-

rithm, where both input and solution will be in C:

for k, i,j = 1 to 7?

c[ij] = c[i,j]e{C[i,k]^c[k,j])

end _for

The above notation is a convenient representation for the 3 nested loop algorithm. © represents

the logical V (min) and (g) represents the logical A {+ ) in the transitive-closure problem (all-

shortest-path problem), respectively.

After adding indices to each variable, the algorithm becomes:

Because there are three data-dependence vectors in matrix-multiplication algorithm.
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for k, i,j = 1 to ri

if; = 1

thenC(>'-'-^^[i,k] = C^^'-'''j">[i\j']

else ^('•••''[i. ^-] = C('''''-'-^'[?, /I-];

if? = l

else CC^'-'J'!^-,;] = C('^''-i'J)[fc,;];

end_for

There are five data-dependence vectors:

di = (0,0,1)' for iC^'''''^^[i,klC^'''''^-^^[uk])

^2= (0,1,0)' for {C^''''^^[kJ],C^''''-''^^[k,j])

d3= (1.0.0)' for (C<*'''J)[i,j].C('^-i-''j)[?,;])

d4= (l.O.j-kY for (C''='''j)[i,it],C('^'''''j')[i',j'])

(/s = (l.?-/t,0)' for (C('^'''j)[il%i].C('''''''j''[j',i'])

We have 0^4, because C[j:,^-] = C[i'J'], i = i', k = /, and k' = /r - 1, thus ik,i,jY - {k'.i'J'Y =

(1,0, j - k^. Similarly we have dr,, because C[k,j] - C[i',j'], k - i', j = j', and k' = k - 1,

thus {k,i,jY - {k'.i'.j'Y = (1,« - ^-.0)'. Although there is only one input stream of C, say C[i,j]

corresponding to ^3, during the execution it will create four data streams corresponding to rfj, ^2,

^4, and ds, respectively. The data-dependence graph for n = 3 is shown in Fig-11. In this graph,

it is easy to see that (^4 and ^5 are not constant. Since we cannot accommodate non-constant

speed in a data stream, we have to fix the corresponding two data streams in PE's. If we let

S5C?4 = S^d^ - 0. it imphes S5 = (0,0,0), that is, all the indices will be mapped into PEq.

Therefore, we can not pipeline this algorithm in the linear array. Thus the algorithm must be

modified.

B. A reindexed path-finding algorithm.

In transitive-closure problem, we have the following properties: First, there is always a path from

node i to node i (i.e. initially. C[i.i] - 1), and second, C''[i,j] > C'[i,j] if k > /, where CliJ] = 1

means that there is a path from node i to node j passing through intermediate nodes from {1,2,

..., p] only, and C^[i.j] = 0, otherwise. (Similarly in all-shortest-path problem: First D[i,i] =

because the shortest distance from node i to node i is zero, and second, Z)'^[i, j] < D'[i,j] if k > /,

where D'^[i,j] denotes the shortest distance from node i to node j passing through intermediate

nodes in {1, 2, . .
. , 9} only.)
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Now let us consider the following reindexed transitive-closure algorithm, which Kung et al. [19]

have mapped to a 2-D spiral array and a 2-D orthogonal array:

for /c, i,_7 = 1 to n

C[i -\- k - I mod n.j + k- 1 mod n] =

C[i + ^- - 1 mod n,j+k-l mod n]©
iC[i + k - 1 mod n,k]l^C[kJ + k - 1 mod n])

endJbr /* Note: / mod n G {1,2, ...,n} */

Based on the properties C[i,i] = 1 and C''[i,j] > C'[i,j] for k > /, we can pipeline each variable

and add the index to each variable to obtain:

for k,i,j = 1 to n

if f = n

if
J-'
= n

then C<''"'"'"'[7i + k - \ mod n.7i + ^' - 1 mod n] = 1

else C*''''"'-''[n + ^- - 1 mod nj+k-l mod n] =

C^'^'-^'j')[k'J' + k'- 1 mod«];

elsejf j = n

then C''^'''")[? + A: - 1 mod n.n + k- 1 mod n] =

C('''''''"'[«' + ^-'-lmodn,A:']

else (?(*''•'"''[! + A- - 1 mod n, j + Ar - 1 mod n] =
C(A-'.:'./)[,' + ;t' _ 1 mod nj' + k' -1 mod n];

if j - 1

then C(''"-''^)[i + k- I mod n,A-] =

C('=-''i)[i + A- - 1 mod n, 1 + A - 1 mod n]

else C(''''-''[' + A- - 1 mod n,A-] =
C<''--«'J-i)[) + A- 1 mod n,k]\

if z = 1

then C('^'i'J)[A-, j + A - 1 mod n] =
C('''i'J)[l -f A- - 1 mod n, j + A - 1 mod n]

else C(''"'''J)[^',
J + A - 1 mod n] =

C(t,.-i,j)[;t,j-fA- 1 modn]:

C(>='''J)[i + A- - 1 mod n. j + A- - 1 mod n] =

(7('.-,'.j)[f + ^. _ 1 mod n,i + A - 1 mod n] ©
C('=.'.J)[y + A - 1 mod n,A-]® C'*'''J)[^%

J + 't - 1 mod n]

endJbr /* Note: ?' mod n G {1,2, ...,7?} */
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After labelling, there are also five data-dependence vectors: cfj = (0,0. 1)' for (C^'''''^^[i+ k- I mod
n,fc],C('='''J-i)[t + fc - 1 mod n,fc]), dj = (0,1,0)' for {C^''''''^[kJ + k-\ mod n],C^''''-'^-^^[kJ +
/t - 1 mod n]), da = (1,-1,-1)' for (C'''"''-')[( + A: - 1 mod nj + k - 1 mod n], C''-'''''-'')[«' +
k' - 1 mod nj' + k' - 1 mod n]), ^4 = (1,-1,0)' for (C<'^'''"'[i + Z^' - 1 mod Ti,n -\- k - 1 mod n],

CC^''-'.")!?' + fc' - 1 mod n,/L-']) and ^5 = (1,0,-1)' for (C^'^-^-^'in + k - I mod n,; + fc - 1 mod

n],C^^''^'^">[k',j' + k'-l mod n]).

We have cfa, because C[j + fc— 1 mod n,j + k-l mod «] = C[i' + k' - 1 mod n,j' + k'— 1 mod n],

j + A' - 1 mod 7} = i' + k' — 1 mod n, j + k - \ mod n = j' + A;' - 1 mod n, and A:' = A; — 1, thus

{k,i,jy — {k',i',j'y = (1,-1.-1)'. Similarly we have d^, because C[i + A- — 1 mod n,n + k —

1 mod n] = C[i' + A-' — 1 mod n. A:'], / -|- A; — 1 mod n — i' -{ k' — \ mod n, n -f A; — 1 mod n = A;', and

A'' = A--1, thus {k,i,jy-{k'J'J'y = (1,-1,0)'. Finally, wehav^ds, because C[n + A'- 1 mod n,j+

k — 1 mod J}] = C[k', j' + k' — 1 mod n], n + k — 1 mod n — k', j -\- k — 1 mod n — j' + k' — 1 mod n,

and A-' = A- - 1. thus (k^i.jY - (A-', ?',/)' = (1,0,-1)'. The data-dependence graph for n = 3

is shown in Fig- 12. Unlike in the WarshaU-Floyd algorithm, all the data-dependence vectors are

constant.

Following our method, we obtain Hg = (3.1,1), and if we let Sq = (0.1.1). Hg = (a,6.c),

then from Condition 1, we have a,b,c > 0, and then from Condition 3', we have f
= cj, j- = C2,

"'^2^ = C3, ^f^ = C4 and ^f^ = C5, where all of the Ci to C5 are integers, after that, from Condition

5', we have c, ^ Cj for all i / j and 1 < ?', j < 5. Then, modifying Hg = (3, 1, 1), we let 6 = 2 and

c = 1. After that, from Conditions 2 and 5. ^^[l'l'% / 1, 2, ^. ^, ^, for (x,2/,-)* ^ h - h
and I2 — I\ ^ md,. Then we obtain the following five inequalities: ^

ax -\- y ^ (unless (x, J/,
5)' = m(fi for some m) (10)

ax - c / (unless (a-,?/, r)' = r77(/2 for some m) (11)

a{2.T + y + :) ^ (z - y) (unless (x, ?/, 2)' = md^ for some m) (12)

- a{x + y) ^ (a - l)z (unless {x,y,zY = rnd^ for some m) (13)

- a(x + z) ^ {a + l)y (unless (i,?/, 2)' = mds for some m) (14)

Finally, if a > n, o > 2(n - 1) and a is odd, we can get (a, 2, 1) as a solution for Hg.

As an example, for n = 3. let a = 5. Then the data-flow diagram of the hnear-array algorithm

Hg = (5,2, 1) and Sg = (0, 1, 1) is shown in Fig- 13. This mapping maps (k,i,jY to step (5A:-|-2?-l-j)

and executes it in PE,+j. The foDowing describes how the linear array works:

1. Each PE has five data links, data links 1 and 2 flow from left to right, data links 3, 4, and

5 flow from right to left. In addition, there are no shifting registers for data links 1 and 3,
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one shifting register for data link 2, two shifting registers for data link 4, and three shifting

registers for data link 5.

2. Only one input stream C is fed into the array. It satisfies Corollary 5 for the entrance time

and is fed into data link 3 from right to left.

3. In each index execution we need three data tokens: 23 {C[i + A; - 1 mod n,j + k - 1 mod n]),

zi (C[i + k - I mod n,k]). z-2 {C[k,j + k - I mod n]) and generate a new result r (C[i + k -

1 mod n,j + k—l mod n]). We will use x <— /, to represent that the PE gets x from the data

link i and will use y -* Ij to represent that the PE puts y onto the data link j. Then, when

k — 1, we have the following functions in each cell when performing the index (i,j, fc)':
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The time complexity of this algorithm is 0(n'^), the number of the PEs used is 0{n). In each

PE, we need 0(n) shifting registers for data links 3, 4 and 5, requiring the total storage of 0(7i^).

Since, in this linear-array algorithm the number of the local registers in each PE is a function of

the problem size n, this algorithm is not modularly extensible.

We have also found that Hy = (a', 3, 1) and S7 = (3, 1, 1) can be easily partitioned, where a'

> 24(n — 1), a' > 2n + 9, and a' is odd. However, (H^iSy) is too not modularly extensible. We
ommit the details from this presentation.

8 Conclusions

A systematic method for synthesizing linear-array implementations from nested loop algorithms

has been presented in this paper. The method was based on a set of formal necessary and sufficient

conditions on the sequential algorithm and feasible transformations that were listed in the paper.

This method can be used down to register level.

An important contribution of this paper is the classification of data-dependence vectors based

on the "Zero-One-Infinite" property. Having this classification, we can understand the characters

of the tokens in data streams. It also allows us to formulate conditions on the target linear array.

That is, we can determine whether tokens can be destroyed or not, whether tokens can be pipelined

or not, and whether a PE needs additional I/O ports or not.

We also find tight bounds on time complexity of linear array implementations for an impor-

tant class of algorithms. Specifically, time complexity = ©(storage complexity). Such algorithms

include matrix multiplication, L-U decomposition, inversion of nonsingular triangular matrix, ma-

trix orthogonal triangularization, a version of transitive closure algorithm [7], a version of Discrete

Fourier Transform (DFT) [24], bubble sort, and others. We also provide a technique to determine

whether linear array implementations of these algorithms have both the optimal time complexity

and optimal storage complexity.

We studied a partition model for designing algorithms that can be partitioned. Our method

for partitioning is quite general, although we need to impose the condition that aU data streams

flow in the same direction.

Synthesis of families of linear array implementation for matrix multiplication algorithms was

used to illustrate our method. We were thus able to show the interplay between the formal

conditions listed and various properties of the linear array implementations. In addition we used

the method to synthesize a linear array algorithm for a variant of the Warshall-Floyd algorithm

[19].

As in this paper we restricted ourselves to designing linear arrays with constant I/O, we did

not consider the case where Srf, = 0. Our methodology can, however, be extended to handle this
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case too. After doing that, we can synthesize all 1-D time hyperplane and one-wavefront 1-D

space hyperplane mappings to systolic implementations. That is, if the data streams of systolic

linear array implementations "do not change" directions during the execution, then we also can

synthesize those implementations.

Our method can be used in two ways. It can transform a p nested loop algorithm onto a new

linear array implementation. It also can synthesize a linear array implementation by listing basic

constraints on a PE first. Thus our method contributes towards the utilization of programmable

linear arrays. That is, in the model of general Sd,, we can design only one type of a PE with

appropriate number of data links and local registers, which is subsequently used to synthesize

a single linear array that can solve matrix multiplication, L-U decomposition, triangular linear

system, triangular matrix inversion, DFT, convolution, longest common subsequence, transitive

closure, matrix-vector multiplication, bubble sort, and others.

As our method is able to synthesize large families of feasible linear array implementations, a

software tool analogous to that of Moldovan's [29] could be used to help in selecting implementations

optimizing additional criteria.

Finally, the problem of transforming the algorithms with the non-constant data dependencies

to linear array algorithms is still not satisfactorily solved, even though it may be possible to handle

them on an ad hoc basis as we did for the Warshall-Floyd algorithm.

9 Appendix : Summary of the Method

In this appendix, we summarize our mapping method as a procedure with seven steps. In what

follows, the algorithm model is Ag = (/'', V'^p, F^p). We use symbol d, to denote the i-th data-

dependence vector; 7, /i. and I2, the indices in the index set P — {(21,12^ • • • 7 v)*l'i - *j -
Uj for j = l,2,...,p}; H^ = H -|- IT, where H is Lamport's hyperplane, 11 is the assistant

hyperplane related to H . and H is the hyperplane for 1-D linear array; S, the space hyperplane.

The linear-array model is Ar = (M , K,Tat, Bat , Fat)\ U-b, denotes the direction and the number

of the shifting registers in each PE of the data link i, respectively.

Procedure

Input : A p nested loop algorithm Ag — [P^VAg^FAg)-

Output: A linear-array algorithm (H-^.S). Where.

H-^ is a 1-D time hyperplane, and S is a 1-D space hyperplane.

Input or Output: A linear array Ar = (M^K^TatiBatiFat) can be

either as an input for restricted interconnection primitives

or as an output of a new linear array.
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1. Index all variables in the algorithm, that is, eliminate broadcasting of data and add the

missing index to each variable.

2. Find the set of data-dependence vectors. Each data-dependence vector d, will correspond to

data link i of the linear array.

3. Compute H^ and S.

We use a heuristic method:

First, find Lamport's hyperplane H^ = (0-1,02, ,oip). such that H d, > for all data-

dependence vectors, and it satisfies H = minjj{max{|H(72 — /i)| | I\.h € ^^}}-

Second, let the space mapping S = {si,S2,- ,Sp), where Si,S2, • • , and Sp are variables with

values to be determined later.

Third, let the assistant hyperplane 11 = (tti, 7r2, . . . ,7rp), where 7ri,7r2, ..., and TTp are also

variables with values to be determined later.

Fourth, let H^ = H^ -|- n = (qi + 7ri,Q2 -f 7r2, . . . ,Qp -|- TTp).

(Note: W'e found that it is easy to derive H by modifying Lamport's H , other methods

for finding H'^ independently are possible.)

Fifth, define the relations between H and S. In order to preserve the data-dependence

relations and to relate them to the linear-array model, H and S must satisfy the following

constraints:

(a) H^d, > for every data-dependence vector rf,.

(b) If 7] and I2 are two indices of P, then

for {Pj - qj) < Xj < (qj - Pj ) and j = I p.

(c) if d, 7^ mdj and dj ^ md, for any m, then g^
'

7^ g ^ ^
.

(d) If (/2 - A) 7^ md, for any m, then W^(l2- Ii)Sd, / S(/2 - h)n'^d,.

(e) g^*^' must be an integer for every data-dependence vector d,.

(f) If there are 6, shifting registers in each PE for the data link i, then 6, =
|

g^*^'
|
- 1.

(g) If Sdj > then t, = 1 and the data stream i will be fed into the linear array at

^•E^min{S/i|/ie/p}- ^^ ^^' ^ ^ ^^^^'^ ^' ~ ~^ ^^^ ^^^^ data stream i wiU be fed into the

linear array at P.Ejnax{S/2|/2e/p}- (Note: If Sd, — then i, = and the data stream will
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be fixed in the PEs. However, in this paper, we chose not to consider this case, although

it is a simple extension.)

Note: (a)-(d) guarantee no data conflicts in the data flow; (e)-(g) relate the linear-array

algorithm (H-^,S) to the linear-array model Ar.

4. Determine the trade-ofi"s between the time, the number of PEs, and the number of the local

shifting registers in each PE.

(a) Given a space mapping S = {si,S2,. iSp), H^ must satisfy all of the constraints in

step 3.

(b) Given the number of the shifting registers of the PE, from constraints (e)-(g) in step 3,

H^ and S must satisfy, ^g^ = ^(6, -|- 1).

(c) If we want to obtain an algorithm with minimum execution time, then we add the

constraint H^ = minjji{max{|Hl(/2 - /i)| | h, h G /''}}•

(d) If we want to obtain an algorithm with minimum number of PEs, then we add the

constraint S = ming{max{|S(/2 - /i)| |
/1./2 G I^}]-

Note that, of course, it may not in general be possible to satisfy the two objectives (c) and

(d) simultaneously.

5. Map the algorithm into the linear array:

• The number of PEs is M = max{|S(/2 - /i)| | luh £ I"} + 1-

Note: Although the PEs are numbered here from min{S/i|/i G P} to max{S72|-^2 £ I^}^

we can renumber them from 1 to M

.

• The execution time is T = 0(max{|Hl(/2 - /i)| | I^h G P} + M(l + E^i bi)).

• Define the entrance time of each data token:

Suppose a variable x. whose data-dependence vector is tf, of type 1, is used in I and

enters PE^j at time H^/.

If Sd, > 0. then x is fed into the linear array at /'£inin{S/i|7i€/p} ^^ time

Hi/ - (S7 - min{S/il/i G Z"})^-

If Sd, < 0, then x is fed into /'-E'niax{S/2|/2 6/p} ^t time

H^/ - (max{S/2|/2 G F} - S/)^-^.
hdi
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• We can execute the function Fat = f^Ag in P^SI ^^ time H^I.

6. Consider partitioning of the algorithm, when the size of the array required for the unparti-

tioned algorithm is larger than that of the available linear array:

If all of the data streams have the same direction, i.e. for all rf,, Sd, > 0, and q is the number

of PEs in the available linear array, then we have a partitioned algorithm (Hi, Sq) as follow:

• Hl/:^ H^/ in phase ["(S7- min{S/i|/i € /P} + l)/^]. and

• Sq/= (S7- min{S7i|/i e P} + 1) mod 9. (a mod be {1,2, . . . ,6}.)

7. Analyze the performance.
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